
 || Volume 2 ||Issue 1 ||JANUARY-MARCH 2017|| ISSN (Online) 2456-3293

Copyright to OAIJSE 1

GUI BASED QUERYING AND MIGRATION APPROACH FOR MONGODB

 Mr. M. B. Jadhav
1
, Prof. R. R. Badre

2

P.G. Student, Computer Science & Engineering, MIT AOE, Alandi, Pune, Maharashtra, India. 1

Assistant Professor, Computer Science & Engineering, MIT AOE, Alandi , Pune, Maharashtra, India. 2

--

Abstract: With the exponential growth of Big Data on the transactional side of the web architecture, the use of NoSQL

databases has seen a considerable amount of growth in the recent years. Going along, one of the keys aspect that keeps every

database developer concerned is the ability to communicate dynamically and exchange data between the traditional RDBMS,

Hadoop and the No SQL databases. Moreover, the advancements in the application developments also increases the overhead

of the developer in writing complex yet optimized queries. There are a number of applications available in the market that

focuses on the Migration activities as also we have some applications which provides auto complete features to ease the

development part. But this again leaves you managing a bulk of tools which is a very tedious task working on critical

application. In this model, we would be building a central web based graphical tool for exchanging data between MongoDB,

Hadoop and RDBMS. Additionally, this system will provide the first ever completely optimized EMS with graphical querying

features. Now let it be a simple or a complex query or an aggregation function or an aggregation Map Reduce, you need not

write a single line of code or command to get things done.

Keywords: MongoDB, RDBMS, Migration, Relational Model, Schema

 I INTRODUCTION

 There exist two major problems in the world of databases

that we would try to take care of through the implementation

of this project.

A. No GUI Tool

 Though we have n number of client tools available

for the databases, there is no tool which provides a complete

GUI for working with data. The user is expected to have

knowledge of databases and should be well versed with

techniques involved in fetching and processing the data. This

results in the application developers spending most of their

time with database developers to make sure that they have the

perfect query based on their specifications. Moreover, with

more aggregate functions into picture, increases the

complexity of writing optimized methods for processing the

data. This makes it even more difficult for developers to work

with new trending databases like MongoDB which do

provide extensible features but do not follow the traditional

SQL framework. In this paper we aim towards building a web

based GUI tool which will eradicate the necessity of knowing

the syntaxes by providing step wise iconic representation of

different methods for processing the data. Moreover, the

integrated library of the tool will also provide a facility to

auto correct all errors. So now even if you are zero in

databases but atleast know what you are looking out from

your data, this tool will enable you to fetch exactly what you

need in the most optimized way without any glitches.

B. No Universal Data Migration Tool:

 With advent of Big Data, managing data using

traditional RDBMS becomes really complex and tedious

work. It has been observed that all the features of the

RDBMS like the schema, Tabular Structure, SQLs, Joins and

ACID have turned out to be limitations restricting the use of

these databases while handling Big Data. NoSQL databases

like MongoDB on the other hand make it relatively much

easier to handle Big Data on the transactional front. As a

result of this, in the recent years the industry has seen a lot of

data migration happening from SQL databases to NoSQL

databases. This migration however introduces new challenges

for the developers of handling different tools for exchange of

data between different platforms. Moreover, it also introduces

the overhead of transforming the queries from one form to

another to suit the syntaxes of different data storage platform

|| Volume 2 ||Issue 1 ||JANUARY-MARCH 2017|| ISSN (Online) 2456-3293

Copyright to OAIJSE 2

which use different languages for processing the data.

Through the implementation of this paper we propose to

build a tool which will enable easy data migration between

MongoDB, MySQL and Hadoop. With a complete GUI

nature of the tools we are looking forward to deploy the

migration process with simple click functions without

actually writing a single line of function, query or any sort of

code. Also this tool will be aiming at building a connect

environment from where any query can be converted

internally to an equivalent MongoDB function and can fetch

the required data from the MongoDB databases without the

need of changing the query implementation from the

programming end.

II MOTIVATION
Working with the Database Clients which have the auto

complete features enabled, does not actually give the

privilege of writing efficient queries without actually

knowing anything out of it. The developer needs to atleast

know some part of the command so that he can leverage the

auto complete feature. It is good to use for the traditional

databases wherein we are well versed with all the options that

we have got, since we are using the SQL from over 3 decades

now. But for new emerging databases like MongoDB, the

scenario is a bit different. MongoDB introduces new set of

efficient functions in each of its release which if used in the

right potential can help processing data in a very optimized

way. But because of lack of awareness of the new

introductions or because of being habituated to use the

common functions, the developer does not make extensive

use of the features available. On the other hand, a tools like

MS Paint, does not keep you thinking what you can do on a

canvas but rather gives you a complete list of available

options to explore so that you can paint your imagination

with getting into the complexity of Computer graphics. So if

this can be done on a graphical platform then why not

implement something similar for the database platform to

make life with databases easier.

III TAXONOMY AND TERMINOLOGY

A. NoSQL Databases

To handle the problem of Big Data we came up with a family

of databases that

 1) Supports Structured as well as Unstructured Data.

 2) Stores data in Flat File System

• Data is stored in Binary Format

3) Can support anything as long as your application can

understand it

 • For Example, you can write the value of the field AGE

as either 24 or twenty-four or 20 + 4

 4) Does not have support to the concept of Data Types

 5) Can scale Horizontally

 6) Use functions to query the data. So that working with Flat

Files becomes easy.

 7) Will embed all properties of an entity with one object

itself i.e. have embedded objects. This eradicates the need of

maintaining Joins as Joins become expensive with the

increase in number of Tables.

These Databases are called as NoSQL Databases,

popularly called as Not Only SQL Databases. These

Databases do not follow any properties of the Traditional

RDBMS. Based on how they store and Retrieve Data, they

can be broadly classified as

 1) Key Value Pair Store Databases

• Popular in this category is Amazons Dynamo

 2) Columnar Store Databases

• Popular in this category are Googles Big Table and

Facebooks Cassandra.

 3) Document Store Databases

• Popular in this category is 10 Gens [now known as

MongoDB University] MongoDB

 4) Graph Based Databases

• Popular in this category is Neo4j

B. MongoDB:

MongoDB is the leading NoSQL Database available

in the Market Today. MongoDB is derived from a Latin word

called as Humongous, which means enormous or huge. So

from its name itself MongoDB makes a clear statement of

being enormous with storage as well as processing capabilitie

1) Popularity of MongoDB:

 1) MongoDB was awarded as the Database of the year 2014

and 2015. With this MongoDB became the first ever

Database to achieve this feat consecutively

 2) MongoDB Stands out to be the top most ranked Database

as compared to all NoSQL Databases and ranks 4th as

compared to all the Databases available.

 3) MongoDB is deployed on the production deployments of

more than 70 percent of the Fortune 500 Companies.

 4) MongoDB has been recently deployed on to the Small

Cap and Mid Cap Companies as well.

2) MongoDB Features:

 1) MongoDB is a Distributed, Document Oriented and

Open Source Database.

 2) Mapped with a SQL Database, Collections in MongoDB

resemble to Tables in SQL Databases and Documents in

MongoDB resemble to Records in SQL Databases.

 3) MongoDB is an Object Oriented Database that uses

JavaScript functions and syntaxes to process results out of the

Collections.

 4) In MongoDB all the records are organised into JSON

Documents where every Document is treated as an Object.

|| Volume 2 ||Issue 1 ||JANUARY-MARCH 2017|| ISSN (Online) 2456-3293

Copyright to OAIJSE 3

 5) MongoDB can be used for any Domain and any Kind of

Application which gives it one more advantage overs its

counter-parts like Cassandra and Dynamo.

 6) It is a Cross Platform Database that can be installed on

any Operating System may it be Windows or Linux or any

other OS. Moreover, only the installation part of MongoDB is

different for all the OS, but once you get into the Mongo

Shell, everything is the same irrespective of the backend OS.

 7) MongoDB has one of the finest integrations with almost

all available Programming Languages starting right from the

most basic ones like C and C++ to languages like Java, PHP,

Pearl, Ruby etc.

 8) MongoDB provides Automatic Scaling around a concept

called as Sharding.

 9) It also provides High Performance, High Availability and

Automatic Failover around a feature called as Replication.

 10) MongoDB provides full support to Indexing and

implements Aggregation in 3 different ways of Pipeline,

Standalone and Map Reduce.

 11) It has open integrations with popular BI tools like

Pentaho and Tableau.

 12) It has the finest integration with Hadoop, providing the

most powerful platform for Data Analysis.

IV RELATED WORK

F. Matthes and C.Schulz in [5] state that ”Tool-supported

one-time process which aims at migrating formatted data

from a source structure to a target data structure whereas both

structures differ on a conceptual and/or physical level”.

According to ”Girts Karnitis” and ”Guntis Arnicans”

in [1] Data Migration is a combination of 2 steps wherein we

restructure the data from the source to meet the specifications

of the target system and secondly initiate the transfer from the

source to the destination. Several methods including but not

restricted to Schema Conversion, meta-modelling, ETL and

automated data migration approach deal with these steps.

There are 2 levels in which data is available in a RDBMS viz.

Physical Level and Logical Level. Different tree building

algorithms are used to define the logical hierarchy that exists

in the data.

 ”Gansen Zhao”, ”Weichai Huang”, ”Shunlin Liang”

and ”Yong Tang” in [2] define MongoDB in to a Relational

Model. The Authors define two levels of defining the

schema. One of which is the Micro Level in which the

Schema of MongoDB Collection can be considered to be

fixed and the other one is the Macro Level in the Schema of

MongoDB Collection would vary for any two given instances

of time. So if we want to define the Schema of a MongoDB

Collection, then considering the Micro Level we can state

that the Relational Model of MongoDB is MongoDB

Collection maps to Table in the Relational Model. The

Schema is composed of keys present in the document the

would define the structure of all tuples. Every value will be

corresponding to the value of a key which will be null if the

key is not present in a document. There can also exist Parent-

Child relations between tables which can be identified by the

Primary and Foreign Keys which will define the Keys in the

Main Document and the Keys for the Sub Documents [4].

 ”Thalheim” and ”Wang” [3] state that in order to

migrate the data, one needs to have a thorough understanding

of the data source such as data availability and data constraint

since different data sources are designed using different

modelling semantics. Mongify is a tool that enables data

translation from SQL databases to MongoDB. It provides

integration with MySQL, PostgreSQL, SQLite, Oracle, SQL

Server and DB2. It works well with all versions of

MongoDB. MongoBooster is a Cross Platform GUI tool for

MongoDB working on a shell centric platform providing in-

place updates and integration with Moment.js.[7] It supports

the ES6 syntax providing a true intelligence experience. It

provides support for mongoose like fluent query builder API.

API which enables you building queries using chaining

syntaxes instead of simple JSON Objects. Writing more

concise and readable MongoDB scripts becomes easy with

the built-in support for block variable scoping, arrow

functions and template strings.

 RoboMongo [6] does not emulate the shell of

MongoDB rather it simply embeds the same environment and

engine available with the Mongo Shell. It is currently

supports the MongoDB version 3.2. RoboMongo executes the

code in an internal VM based on JavaScript rather than

simply analysingthe semantics of the code, giving the user an

auto complete feature at runtime, adding features that cannot

be obtained otherwise using the static methods.

NoSQL viewer stands out to be a free GUI based

client for NoSQL databases like MongoDB, Cassandra,

Couch base, Couch DB and Hbase. It enables users to

simultaneously perform CRUD operations from one single

platform eliminating the overhead of using multiple tools for

different databases. It provides easy yet powerful, high

performance migration functionality between any supported

Big Data databases.

MongoDB Connector for Hadoop enables the

integration between the 2 most powerful data storage systems

from the OLTP and OLAP sectors. It allows the ability to use

MongoDB and Hadoop as sources and destinations for data

transfers.

 Database Master is easy to use database querying,

administration and management tolls that provides a

consistent user interface with modern styling and interface. Is

simplifies the process of managing, monitoring, querying,

editing, visualizing and designing relational and NoSQL

|| Volume 2 ||Issue 1 ||JANUARY-MARCH 2017|| ISSN (Online) 2456-3293

Copyright to OAIJSE 4

database systems. It allows users to execute extended scripts

in SQL, JSON and C Sharp providing all database objects

like tables, views, procedures, packages, columns, indexes

and triggers.

V PROPOSED WORK

This project is supposed to be a blend of 3 Web Enabled GUI

Applications into one single platform

1) A migration tool that can exchange data between

 • MongoDB and RDBMS

 • MongoDB and Hadoop

2) A GUI tool that will provide

 • Drag and Drop elements pertaining to

 • CRUD Operations

 • Aggregation

 • Indexing

 • Replication

 • Sharding

 • Autofill syntaxes wherever applicable

3) Administrative tool that will provide

 • One Click MongoDB Cluster Setup

 • Cluster Monitoring

 • Replica Set Setup

 • Sharded Cluster Management

 • Query Transformation

VI CONCLUSION

In this way we are looking forward to build a tool that will

ease of the pressure from the Developers to understand the

syntax and will help build better queries. Moreover, it will

enable quick Migration activities as the tedious load of query

translation will be take care of. We would be implementing

the GUI tool for CRUD operations which can be extended

further to support aggregations as well and the Migration tool

that we would be building will support 1NF which can be

further extended to support higher hierarchies.

ACKNOWLEDGMENT

I would like to thank department of computer engineering

MIT AOE for providing such enthusiastic, energetic and

warm environment for the development of student’s

creativity. I am thankful to guide Prof. R. R. Badre for

providing consistent support throughout the work.

REFERENCES

[1] Girts Karnitis and Guntis Arnicans Migration of

Relational Database to Document-Oriented Database:

Structure Denormalization and Data Transformation. 7th

International Conference on Computational Intelligence,

Communication Systems and Networks (CICSyN).

[2] Gansen Zhao, Weichai Huang, Shunlin Liang, Yong Tang

Modelling MongoDB with Relational Model. 2013 Fourth

International Conference on Emerging Intelligent Data and

Web Technologies.

[3] B. Thalhein and Q. Wang Data Migration: A theoretical

perspective . Data and Knowledge Engineering, vol. 87, pp.

260-278, 2013.

[4] Aryan Bansel Horacio GonzalezV elez Adriana E. Chis

Cloud-based NoSQL Data Migration. 2016 24th Euromicro

International Conference on Parallel, Distributed, and

Network-Based Processing.

[5] F. Matthes and C. Schulz Towards an integrated data

migration process model. Software Engineering for Business

Information Systems (sebis), 2011

[6] www.robomongo.org/.

[7] www.mongobooster.com/.

[8] www.mongodb.com/cloud .

[9] www.mongify.com .

[10] D. Lee, M. Mani, F.Chiu, and W. Chu translating

relational schemas to XML schemas using semantic

constraints. proceedings of the 11th CIKM, 2002, pp.282-

291.

