

OPEN ACCESS INTERNATIONAL JOURNAL OF SCIENCE & ENGINEERING

DETECTION OF LEAF DISEASE AND CLASSIFICATION USING IMAGE PROCESSING

Abhang Kalyani¹, Tayade Payal², Tilekar Nilesh³, Wadekar Satyam⁴, Prof. Borkar B. S.⁵

Department of Information Technology, Savitribai Phule Pune University, Pune, Maharashtra, India^{1,2,3,4,5} Abhangkk01@gmail.com, tpayaltayade@gmail.com, Tilekar98@gmail.com, Satyam.12347@gmail.com, borkar.bharat@gmail.com

Abstract: Pest detection techniques is recently increasing in order to grow the productivity and quality of yield. To improve crop productivity disease identification is very much important, but some diseases cannot be identified at early stage by farmers and the crop will harm. Hence to avoid the decay of the plants and to improve quality of the product pest detection is important. The pest detection methodology will be developed by using the image processing algorithm like K- means algorithm. It will classify the leaf image in the factors like color-features, texture features, ad their combinations to train three models based on support vector machine classifier. The dataset will be trained dataset which will consist the thousands of images collected from plat village and farms. The system will be having the trained dataset to identify the healthy and diseased leaf. It will contain the different images of the diseased leaf along with the healthy leaf. The system will be easier to use as it only takes the input as image of plant and it is giving result like healthy and diseased plant. Hence farmers can easily use the system to improve the quality of crop.

Keywords: Plant disease, Image processing, Android, etc.

I INTRODUCTION

Pest detection is major challenge in the field of agriculture. India is a country of agricultural field. Many people feed on it. But due to environmental changes, many diseases occur to the plants or crops. It leads to reduce the yield and hence the income of farmer reduces. Farmers using traditional method for pesticides. But now a day's technology is growing faster. We can implement its applications to the day today life. Image processing is one of those fastest growing technology in today's world. Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. Nowadays, image Processing is among rapidly going technologies. It forms core research are within engineering and computer sciences. As our country is Agricultural country, most people are feeding on the farming.

Diseases to the crop can affect badly to the productivity. Hence disease detection is important. So, we extend the application of an image processing in farming sector to early detection of the diseases.[9] Image Processing uses machine learning algorithm for making the work simple and sorted. Many supervised and unsupervised algorithms are used for image Processing. The machine learning algorithm which we going to use is supervised learning algorithm. Supervised learning is the machine learning task of learning a function that maps an input to an output based on example input-output pairs. A supervised learning algorithm analyzes the training data and produces an inferred function, which can be used for mapping new examples.

II. LITERATURE SURVEY:

Detection of PestsI Using Color Based Image Segmentation Name of Authors- Apurva Sriwastwa, Shikha Prakash, Mrinalini, Swati Swarit, Khushboo Kumari, Si- tanshu Sekhar Sahu

Paper Review

In this paper, we use colour based image segmentation method to efficiently detect the pest. The extensive simulation results on various pest images show that the proposed method outperforms the existing Otsu's method and edge detection segmentation [1].

Novel Algorithm for Segmentation and Automatic Identification of Pests n Plants using Image Processing

In this paper we present a clustering technique, the popular algorithm for clustering is kernel- based fuzzy c-means clustering algorithm (KFCM) is used to identify density of pest in plant. A supervised learning neural network was applied to the classification of feature extraction of leaf. The methods studied are for increasing throughput reducing subjective arising from human experts in detecting the pests in plant [3] eAGROBOT- A Robot for Early Crop Disease Detection using Image Processing

Name of Authors

Sushma R. Huddar, Swarna Gowri, Keerthana K., Vasanthi S., Sudhir Rao Ru- panagudi Paper Review

In this paper, we propose a novel and unique algorithm to segregate and detect pests using image processing. The proposed methodology involves reduced computational complexity and aims at pest detection not only in a greenhouse environment but also in a farm environment as well [2].

E_cient Kernel-Based Fuzzy C-Means Clustering For Pest Detection and Classification

Name of Authors- N. Vinushree, B. Hemalatha, Vishnu Kumar Kaliappan Paper Review

Name of Authors

Sai Kirthi Pilli, Bharathiraja Nallathambi, Smith Jessy George, Vivek Diwanji Paper Review

eAGROBOT (a prototype) is a ground based agricultural robot that overcomes challenges existing in large and complex satellite-based solutions and helpdesk form of solutions available as m-Services. It provides a small, portable and reliable platform to automatically survey farmland, detect diseases as well as spray the pesticide. [4]

III PROPOSED SYSTEM:

Figure 1: Proposed System

This implementation is aimed at a real time usage of Detection Identification of Pest using Image Processing. Disease detection in farming is major challenge for farmers which leads to decreasing yield and quality. Hence to improve quality of product pest detection is important. Through this application farmer can easily identify the pest on crop and get suggestions about the pesticides.

WWW.OAIJSE.COM

IV EXPERIMENTAL RESULTS:

Figure 3: Language Selection

Figure 4: Image Input

Figure 5: Disease Detected

WWW.OAIJSE.COM

Pvthon 3.6.8 Shell х File Edit Shell Debug Options Window Help Python 3.6.8 (tags/v3.6.8:3c6b436a57, Dec 24 2018, 00:16:47) [MSC v.1916 64 bit (AMD64)] on win32 Type "help", "copyright", "credits" or "license()" for more information. >>> ====== RESTART: C:\PlantDiseaseDetection-master withoutdtst\cnn.py ======= 0%| | 0/4000 [00:00<?, ?it/s] 0%| | 1/4000 [00:00<16:16, 4.10it/s] 0% | 14/4000 [00:00<11:30, 5.77it/s] 1% | 33 /4000 [00:00<08:07, 8.14it/s] 2%1 | 61/4000 [00:00<05:42, 11.49it/s] 2%|2 | 84/4000 [00:00<04:03, 16.06it/s] 3%|2 | 109/4000 [00 :00<02:54, 22.33it/s] 3%|3 | 132/4000 [00:00<02:06, 30.47it/s] 4%|4 | 160/4000 [00:00<01:32, 41.43it/s] 5%|4 | 186/4000 [00:01<01: 08, 55.37it/s] 5%|5 | 212/4000 [00:01<00:52, 72.45it/s] 6%|5 | 236/4000 [00:01<00:41, 90.34it/s] 6%|6 | 259/4000 [00:01<00:35, 106 .09it/s] 7%|7 | 284/4000 [00:01<00:29, 127.34it/s] 8%|7 | 30 7/4000 [00:01<00:26, 141.06it/s] 8%|8 | 337/4000 [00:01<00:21, 166.99i t/s] 9%|9 | 365/4000 [00:01<00:21, 171.30it/s] 10%|9 | 387/40 00 [00:02<00:21, 168.48it/s] 10% |# | 416/4000 [00:02<00:18, 191.91it/s] 11%|#1 | 442/4000 [00:02<00:17, 207.74it/s] 12%|#1 | 466/4000 [00:02<00:16, 209.89it/s] 12%|#2 | 492/4000 [00:02<00:15, 221.59it/s] 13 %|#2 | 516/4000 [00:02<00:15, 218.70it/s] 14%|#3 | 541/4000 [00:0</pre> 2<00:15, 222.04it/s] 14%|#4 | 565/4000 [00:02<00:15, 226.77it/s] 15%|#4 | 589/4000 [00:02<00:15, 222.21it/s] 15%|#5 | 612/4000 [00:03<00 :16, 203.57it/s] 16%|#5 | 637/4000 [00:03<00:15, 215.26it/s] 16%|#6 | 660/4000 [00:03<00:15, 215.73it/s] 17%|#7 | 682/4000 [00:03<00:15, 213.47it/s] 18%|#7 | 706/4000 [00:03<00:15, 218.94it/s] 18%|#8 | 729/4000 [00:03<00:16, 202.70it/s] 19%|#8 | 754/4000 [00:03<00:15, 210 .78it/s] 19%|#9 | 776/4000 [00:03<00:15, 212.80it/s] 20%|#9 | 79 8/4000 [00:03<00:17, 180.47it/s] 21%|## | 825/4000 [00:04<00:15, 200.15i t/s] 21%|##1 | 847/4000 [00:04<00:15, 197.64it/s] 22%|##1 | 869/40 00 [00:04<00:15, 202.68it/s] 22%|##2 | 890/4000 [00:04<00:15, 198.68it/s] 23%|##2 | 911/4000 [00:04<00:16, 189.59it/s] 23%|##3 | 931/4000 [00:04<00:15, 192.56it/s] 24%|##3 | 951/4000 [00:04<00:16, 185.22it/s] 24 %|##4 | 970/4000 [00:04<00:16, 178.43it/s] 25%|##4 | 989/4000 [00:0</pre> 4<00:17, 168.87it/s] 25%|##5 | 1007/4000 [00:05<00:17, 170.56it/s] 26%|# #5 | 1025/4000 [00:05<00:17, 169.33it/s] 26%|##6 | 1043/4000 [00:05 <00:21, 140.46it/s] 26%|##6 | 1060/4000 [00:05<00:19, 148.16it/s] 27%|## 6 | 1076/4000 [00:05<00:21, 137.08it/s] 27%|##7 | 1093/4000 [00:05< 00:20, 144.95it/s] - 🤶 🚔 🍋 🧔 🔤 n: 5 🎲 : 20 []] eb and Windows

Figure 6: Database Training

WWW.OAIJSE.COM

ISO 3297:2007 Certified

I Image File Home Share View Manage	test								- 0	× ~ 0
← → → ↑ 📙 → This PC → Local Disk (C:) →	PlantDiseaseDetection-mas	ter_withoutdtst > te	st → test				~	ල Search test		Q
This PC Desktop	7bc84e32-7cd8-4 66c-9000-d32ee7 e75e9cUF.GRC _YLCV_Lab 0267	7bc2321e-e0e8-4 eb0-ad9b-3bfee6 2d3c7dYLCV_ GCREC 2638.JPG	7bd5f0ae-4a05-4 d77-93e2-831baf 851726UF.GRC _YLCV_Lab 0847	7bd36299-ae5f-4 0ac-81b1-99adef bc6950YLCV_G CREC 5488JPG	7beb814a-9589-4 d25-be33-bec83d 4b3d82YLCV_ GCREC 2701JPG	7bed5bdc-3cf3-4 e18-9c43-0a8b01 c95801UF.GRC _YLCV_Lab 0933	7bff3fb7-788d-41 4c-bf0e-92a5ce4a 4757UF.GRC_Y LCV_Lab 02064	7c2eeadd-b0fe-4 064-a6ee-7c3315 9396aaYLCV_G CREC 5355JPG	7c3b7cf9-577b 4d6-841f-1d3a' 24d4eUF.GR YLCV_Lab 033'	-4 5f2 1
Downloads Music Pictures Videos Local Disk (C:)	7c3ed900-34c4-4 6da-af1e-98eaf6a	7c5b5998-668f-4f 9e-97cf-978583a2	7c6b3ee3-33cf-4a 2c-a245-497b88d	7c7e347d-fc03-41 f2-8edc-bb284ce	7c8a214f-de9a-41 5a-addf-2c89b35	7c21fc98-1815-4b 72-a5ac-378ad44	7c34e58a-5d8a-4 da8-b3c0-843a1b	7c56b8b1-8652-4 f5d-afac-7ccc4e7	7c68fee7-06a4 bc-8a24-eb39;	-4b
api diabetes_predictions	4a628UF.GRC_ YLCV_Lab 0217	4841YLCV_GC REC 2276JPG	6d9b9UF.GRC_ YLCV_Lab 0960	7c969UF.GRC_ YLCV_Lab 0174	d69ffYLCV_GC REC 2406.JPG	6a3e7UF.GRC_ YLCV_Lab 0300	f64584YLCV_G CREC 1943.JPG	354d4YLCV_N REC 2753.JPG	3a222UF.GRC_ YLCV_Lab 0165	
heart_disease_prediction Intel Oclu_dedFace_Recognation PerfLogs	72746555 4114.4	7-75b26b 61fa 4	Tealsers Ase An	Taisale deal of	7-353-20, 0121, 4	Traffeele fabl 40	7617241 5000 4	Tegogial feet 44	7-025470 049	
 PlantDiseaseDetection-master_withoutdtst Program Files Program Files (x86) 	031-a675-2c6bb6 ff7b48UF.GRC_ YLCV_Lab 0961	c5a-b371-8bb7bf 128334UF.GRC _YLCV_Lab 0947	61-a727-7e4777d aa562UF.GRC_ YLCV_Lab 0162	73-8ba8-6b8efd6f a631YLCV_GC REC 2148.JPG	c44-be3a-53f1211 04f77YLCV_NR EC 2818JPG	ad-8886-f91308c5 a1abUF.GRC_Y LCV_Lab 02184	137-b970-2b83ca 3744b1UF.GRC _YLCV_Lab 0850	1b-9f68-03e27544 1eb6UF.GRC_Y LCV_Lab 02853	0bc-8107-182c aa5309UF.G _YLCV_Lab 016	:35 RC i0
Sarcasm_detector-master Satelite_Images_Change_Detection Skin_disease_prediction SPAM_EMAIL_DETECTION temp Traffic Management	7c634567-47ed-4 739-930b-aec96a 857ad6VLCV_G	Tca59adf-902b-4 c6f-914d-e1ead4 26c8abYLCV_G	7cc7a1c7-b3f4-47 0c-ba6b-e3d427f b3683_UF.GRC_	7ceecafc-d328-44 10-a9e0-5978860 e71d5_UF.GRC_	7cf516ee-327 Item type: JP(7cf5 Rating: Unrat a6-8 Dimensions: 7f82 Size: 7.18 KB	e-40a6-810b-7c08ea5 3 File ed 256 x 256	7f825_UF.GRC_YLCV	/_Lab 02062.JPG 4 64 8C	7d9d7a78-4578 722-9f1f-3c83 bd3fdYLCV	3-4 7f0 /_G
Users Windows — Dramon (PA 2,000 items 1 item selected 9.12 KB	CREC 2060JPG	CREC 5171.JPG	YLCV_Lab 0946	YLCV_Lab 0160	YLCV_Lab 0206	EC 2361JPG	LCV_Lab 02591	_VLCV_Lab 0293 e	e Windows	G
Search the web and Windows	Ø	😑 e e	1 🖊 🧔	P- 👬	ø			~ "= <i>(</i>	ã ⊄× 📮 5:3 4/18	5 PM 8/2020

Figure 7: dataset

Figure 8: Serer Log

V. CONCLUSION:

Image processing technique plays an important role in the detection of the pests. Our first objective is to detect whiteites, aphids and trips on greenhouse crops. We propose a novel approach for early detection and identification of pests using Image Processing. To detect objects, we use pan tilt camera with zoom. So, without disturbing the pests we are able to take the image. It the collaboration of complementary illustrates disciplines and techniques, which led to an automated, robust and versatile system. It helps to detect the pests as early as possible and reduce the use of pesticides. It provides a simple, efficient and fast solution in detecting and identifying pests using Image Processing. It is simple to use and exhibits the same performance level as a classical manual approach.

REFERENCES:

1]Apurva Sriwastwa, Shikha Prakash, Mrinalini, Swati Swarit, Khushboo Kumari, Sitanshu Sekhar Sahu, Detection of Pests Using Color Based Image Segmentation, IEEE, 2018.

[2] Sushma R. Huddar, Swarna Gowri, Keerthana K., Vasanthi S., Sudhir Rao Ru- panagudi, Novel Algorithm for Segmentation and Automatic Identi_cation of Pests on Plants using Image Processing, IEEE, 2012

[3] N. Vinushree, B. Hemalatha, Vishnu Kumar Kaliappan, E_cient Kernel-Based FuzzyC-Means Clustering for Pest Detection and Classi_cation, IEEE, 2014

[4] Sai Kirthi Pilli, Bharathiraja Nallathambi, Smith Jessy George, Vivek Diwanji, eAGROBOT-A Robot for Early Crop Disease Detection using Image Processing, IEEE, 2014.

[5] Y.Sanjana, AshwathSivasamy, SriJayanth, Plant Disease Detection Using Image Processing Techniques, IJIRSET,May 2015

[6] Kaushik Kunal Singh, An Arti_cial Intelligence and Cloud Based Collaborative Platform for Plant Disease Identi_cation, Tracking and Forecasting for Farmers, IEEE 2018.

[7] K. Thenmozhi,Image Processing Techniques for Insect Shape Detection in Field Crops ,IEEE 2017

[8] https://sisu.ut.ee/imageprocessing/book/1

[9]https://www.geeksforgeeks.org/uni_ed-modelinganguage-uml- sequence- diagrams/