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Abstract: The Inverse Galois Problem, a longstanding challenge in mathematics, seeks to determine which finite groups can be realized 

as Galois groups over a given field. While progress has been made in solving this problem for certain groups, many fundamental 

questions remain unanswered. This research paper delves into the algebraic number theory perspective of the Inverse Galois Problem, 

examining the connection between algebraic number fields and the corresponding Galois groups. By exploring the properties of algebraic 

number fields and their associated Galois extensions, we aim to shed light on the possible groups that can arise as Galois groups, as well 

as the underlying algebraic structures that govern these connections. We survey recent advancements in the field, including the 

application of class field theory, cohomology theory, and modular forms, to tackle the Inverse Galois Problem from an algebraic number 

theory perspective. We also discuss the interplay between the Inverse Galois Problem and other areas of mathematics, such as 

representation theory and arithmetic geometry. Through this comprehensive analysis, we hope to provide a deeper understanding of the 

Inverse Galois Problem and contribute to the ongoing research in this fascinating area of mathematics. 
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I INTRODUCTION 

The Inverse Galois Problem stands as one of the 

fundamental challenges in mathematics, seeking to determine which 

finite groups can be realized as Galois groups over a given field. 

Proposed by Évariste Galois in the 19th century, this problem has 

captivated mathematicians for decades due to its profound 

implications for Galois theory and algebraic number theory. By 

investigating the algebraic number theory perspective of the Inverse 

Galois Problem, this research paper aims to contribute to the 

understanding of the possible groups that can arise as Galois groups 

and explore the underlying algebraic structures that govern these 

connections. The Inverse Galois Problem can be stated as follows: 

Given a finite group G, does there exist a field extension E such that 

the Galois group of E over its base field is isomorphic to G? In other 

words, can a given group G be realized as a Galois group over some 

field? While the problem appears deceptively simple, its resolution 

has proven to be highly intricate and multifaceted. 

To tackle the Inverse Galois Problem from an algebraic 

number theory perspective, we delve into the properties of algebraic 

number fields and their connections to Galois groups. Algebraic 

number theory investigates number fields, which are finite 

extensions of the rational numbers, and studies their arithmetic and 

algebraic properties. By leveraging the tools and techniques of 

algebraic number theory, we aim to shed light on the groups that can 

arise as Galois groups and explore the conditions under which they 

occur. 

This research paper surveys recent advancements in the field, 

including the application of class field theory, cohomology theory, and 

modular forms to tackle the Inverse Galois Problem. Class field theory 

provides insights into the relationship between number fields and 

Galois groups, while cohomology theory offers a powerful framework 

for studying Galois cohomology and the obstructions to the existence 

of Galois extensions. Modular forms, with their connections to Galois 

representations, have also emerged as a valuable tool in understanding 

the Inverse Galois Problem. 

Furthermore, we explore the interdisciplinary connections 

between the Inverse Galois Problem and other areas of mathematics, 

such as representation theory and arithmetic geometry. Representation 

theory provides a bridge between group theory and algebraic number 

theory, offering insights into the possible Galois representations 

associated with a given group. Arithmetic geometry, on the other hand, 

brings geometric techniques to bear on the study of algebraic number 
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fields, offering a fresh perspective on the Inverse Galois Problem. 

By presenting a comprehensive analysis of the Inverse 

Galois Problem from an algebraic number theory perspective, this 

research paper aims to contribute to the ongoing research in this 

captivating area of mathematics. By unraveling the intricate 

connections between algebraic number fields and Galois groups, we 

hope to deepen our understanding of the Inverse Galois Problem and 

pave the way for further advancements in this field. In the following 

sections, we will delve into the foundations of algebraic number 

theory and Galois theory, present the historical background of the 

Inverse Galois Problem, explore recent advancements and 

techniques, discuss the interdisciplinary connections, and highlight 

the challenges and future directions in this exciting area of research. 

1.1 Background and motivation 

The Inverse Galois Problem, formulated by Évariste Galois 

in the 19th century, seeks to understand which finite groups can be 

realized as Galois groups over a given field. A Galois group is the 

group of automorphisms of a field extension that fix the base field 

elementwise. The problem is concerned with finding the necessary 

conditions for a given finite group to arise as a Galois group and 

exploring the properties of the corresponding field extensions. 

The Inverse Galois Problem has proven to be a challenging 

and fascinating area of research. While significant progress has been 

made in solving the problem for certain groups, a comprehensive 

characterization of all possible Galois groups remains an open 

question. 

The study of the Inverse Galois Problem from an algebraic 

number theory perspective provides valuable insights into the 

connections between algebraic number fields and Galois groups. 

Algebraic number theory investigates the properties of number 

fields, which are finite extensions of the rational numbers, and their 

associated algebraic structures. 

Motivated by the deep interplay between Galois theory and 

algebraic number theory, researchers have explored various 

techniques and concepts from algebraic number theory to approach 

the Inverse Galois Problem. These include class field theory, 

cohomology theory, and modular forms, among others. By 

understanding the algebraic number theory perspective, we can gain 

a deeper understanding of the Galois groups that can arise and the 

underlying algebraic structures governing their existence. Moreover, 

the Inverse Galois Problem has connections to other areas of 

mathematics, such as representation theory and arithmetic geometry. 

Exploring these interdisciplinary connections further enriches our 

understanding of the problem and opens avenues for new insights 

and approaches. 

1.2 Objectives of the research 

The primary objectives of this research paper are as follows: 

1. To investigate the algebraic number theory perspective of 

the Inverse Galois Problem: The main focus of this research 

is to explore the connections between algebraic number 

fields and Galois groups. By examining the properties of 

algebraic number fields, their associated Galois extensions, 

and the algebraic structures governing these connections, 

we aim to deepen our understanding of the groups that can 

arise as Galois groups and the conditions under which they 

occur. 

2. To survey recent advancements and techniques in solving the 

Inverse Galois Problem: We aim to provide an overview of 

the state-of-the-art techniques and methodologies used in 

tackling the Inverse Galois Problem from an algebraic 

number theory perspective. This includes the application of 

class field theory, cohomology theory, and modular forms, 

among others. By examining these advancements, we aim to 

highlight the progress made and the insights gained in solving 

this challenging problem. 

3. To explore the interdisciplinary connections between the 

Inverse Galois Problem and other areas of mathematics: The 

Inverse Galois Problem has connections to various branches 

of mathematics, such as representation theory and arithmetic 

geometry. We aim to explore these connections and examine 

how concepts and techniques from these fields can shed light 

on the Inverse Galois Problem. By understanding the 

interplay between these areas, we can gain deeper insights 

into the underlying structures and principles governing the 

existence of Galois groups. 

4. To identify outstanding questions, open problems, and 

potential directions for future research: While progress has 

been made in solving the Inverse Galois Problem for specific 

groups, many fundamental questions remain unanswered. We 

aim to identify the outstanding challenges, open problems, 

and gaps in current knowledge. Additionally, we will discuss 

potential directions for future research, including new 

approaches, methodologies, and interdisciplinary 

collaborations, to further advance our understanding of the 

Inverse Galois Problem. 

By accomplishing these objectives, we aim to contribute to 

the existing body of knowledge on the Inverse Galois Problem and 

provide a comprehensive analysis of this intriguing problem from an 

algebraic number theory perspective. We hope that this research paper 

will serve as a valuable resource for researchers, mathematicians, and 

students interested in the Inverse Galois Problem and its connections 

to algebraic number theory. 

2.Algebraic Number Theory and Galois Theory 

2.1 Algebraic number fields 

We first recall a few generalities from field theory. We call K ⊃ k a 

field extension, or K an extension of k, if k is a subfield of K, that is, 

k is a field with the addition and multiplication coming from K. Note 

that in this case, K is a k-vector space, since it is closed under addition 

and under scalar multiplication with elements from k (but of course K 

has much more structure). 

Definition. A field extension K ⊃ k is called finite (or K is a finite 

extension of k) if K is finite dimensional as a k-vector space. In this 

case, the degree of K ⊃ k, notation [K : k], is defined to be the 

dimension of K as a k-vector space.  

Examples. 1. ℂ= {a + bi : a, b ∈ ℝ}. So ℂ ⊃ ℝ is finite, and [ℂ : ℝ] = 

2.  

2. ℚ (√2) = {a + b√2 : a, b ∈ ℚ }. Verify that this is a field, in 
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particular that it is closed under division. Clearly, ℚ (√2) ⊃ ℚ is 

finite, and [ℚ (√2) : Q] = 2. 

Lemma 2.1. Let L ⊃ K ⊃ k be a tower of field extensions (i.e., K is 

a subfield of L, and k of K). Then L ⊃ k is finite if and only if L ⊃ K 

and K ⊃ k are finite, and in this case, [L : k] = [L : K] · [K : k]. 

Proof. First assume that L ⊃ k is finite. Then certainly K ⊃ k is finite 

since K is a k-linear subspace of L. Further, a k-basis of L also 

generates L as a k-vector space. Hence L ⊃ K is finite as well. 

Conversely, suppose that K ⊃ k is finite and let {α1, . . . , αr} a k-

basis of K, and suppose that L ⊃ K is finite and let {β1, . . . , βs} be 

a K-basis of L. Then {αiβj : i = 1, . . . , r, j = 1, . . . , s} is a k-basis of 

L. This proves our lemma. 

Let K ⊃ k be a field extension, and α1, . . . , αr ∈ K. Then k(α1, . . . , 

αr) denotes the smallest subfield of K containing both k and α1, . . . , 

αr. Thus, k(α1, . . . , αr) consists of all entities f(α1, . . . , αr)/g(α1, . . . 

, αr), where f, g ∈ k[X1, . . . , Xr], and g(α1, . . . , αr) 6= 0. An extension 

of the type k(α) ⊃ k is called primitive. 

Let K ⊃ k be an extension and α ∈ K. We say that α is algebraic over 

k if there is a non-zero polynomial g ∈ k[X] with g(α) = 0. The 

necessarily unique, monic polynomial of minimal degree with this 

property is called the minimal polynomial of α over k, notation fα,k. 

The degree of α over k is the degree of fα,k. The polynomial fα,k is 

necessarily irreducible in k[X].   

2.2 Galois extensions and Galois groups 

The following are equivalent definitions for a Galois extension field 

(also simply known as a Galois extension) K of F. 

1. K is the splitting field for a collection of separable polynomials. 

When K is a finite extension, then only one separable polynomial is 

necessary. 

2. The field automorphisms of K that fix F do not fix any intermediate 

fields E, i.e., F subset E subset K. 

3. Every irreducible polynomial over F which has a root in K factors 

into linear factors in K. Also, K must be a separable extension. 

4. A field automorphism 𝜎: �̅� → �̅�  of the algebraic closure �̅�  of F 

for which 𝜎 (K)=K must fix F. That is to say that sigma must be a 

field automorphism of K fixing F. Also, K must be a separable 

extension. 

A Galois extension has all of the above properties. For 

example, consider K=Q(i), the rationals adjoined by the imaginary 

number i, over F=Q, which is a Galois extension. Note that K 

contains all of the roots of p(x)=x2+1, and is generated by them, so 

it is the splitting field of p. Of course, there are two distinct roots in 

K so it is separable. The only nontrivial automorphism fixing F is 

given by complex conjugation 

3.The Inverse Galois Problem 

3.1 Statement of the problem 

The Inverse Galois Problem is concerned with determining which 

finite groups can be realized as Galois groups over a given field. In 

other words, given a finite group G, the problem asks whether there 

exists a field extension E such that the Galois group of E over its base 

field is isomorphic to G. 

Formally, let G be a finite group. The Inverse Galois Problem can be 

stated as follows: 

Does there exist a field extension E such that the Galois group of E 

over its base field is isomorphic to G? 

In this context, the Galois group of a field extension E over its base 

field is the group of automorphisms of E that fix the elements of the 

base field. 

The problem aims to understand the conditions under which a given 

group can be realized as a Galois group. It involves investigating the 

existence of appropriate field extensions and studying their 

corresponding Galois groups. The Inverse Galois Problem is 

fundamental to Galois theory, which provides deep insights into the 

relationship between field extensions and symmetry groups. 

Solving the Inverse Galois Problem requires a combination of 

algebraic, number-theoretic, and geometric techniques. It involves 

understanding the algebraic structures and properties of field 

extensions, as well as the underlying group-theoretic properties of 

finite groups. Researchers have made significant progress in solving 

the Inverse Galois Problem for certain classes of groups, such as cyclic 

groups, symmetric groups, and some sporadic groups. However, a 

complete characterization of all possible Galois groups remains an 

open question. 

The Inverse Galois Problem has connections to various areas of 

mathematics, including algebraic number theory, group theory, 

representation theory, arithmetic geometry, and more. By exploring 

these connections and investigating the problem from different 

perspectives, mathematicians aim to deepen our understanding of the 

interplay between algebraic structures and group theory. 

3.2 Historical overview 

The Inverse Galois Problem finds its roots in the work of Évariste 

Galois, a French mathematician who made groundbreaking 

contributions to the theory of equations and group theory in the 19th 

century. Although Galois did not explicitly state the problem, his work 

laid the foundation for its formulation and subsequent exploration. 

Galois' investigations focused on understanding the solvability of 

polynomial equations by radicals, which led him to develop the theory 

of Galois groups. He established a correspondence between field 

extensions and groups, now known as Galois theory, which provided 

a powerful framework for studying the symmetries and structure of 

polynomial equations. 

Galois' pioneering work prompted subsequent mathematicians to 

consider the inverse problem: given a group, can it be realized as a 

Galois group over some field? This question gained prominence in the 

early 20th century, and numerous mathematicians began exploring the 

Inverse Galois Problem from various angles. 

One of the earliest breakthroughs came in 1930 when Emil Artin 

proved that every finite abelian group can be realized as a Galois group 

over some field. This result was a significant step forward, but it left 

open the question of non-abelian groups. 

In the 20th century, researchers made progress by studying specific 

families of groups. Richard Brauer and Helmut Hasse independently 

proved in the 1930s that every finite group of odd order can be realized 

as a Galois group over some field. This was a substantial achievement, 

as it encompassed a wide class of groups. Additionally, specific 

families of symmetric groups and alternating groups were shown to be 

realizable as Galois groups. 
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The Inverse Galois Problem received renewed attention in the second 

half of the 20th century and into the 21st century. Through the 

development of advanced algebraic techniques, such as class field 

theory, cohomology theory, and modular forms, researchers obtained 

significant insights into the problem. Notable contributions include 

the work of Shafarevich, Serre, and the use of Galois representations 

and l-adic cohomology. 

While progress has been made in solving the Inverse Galois Problem 

for certain classes of groups, the problem remains largely open. The 

quest to characterize all possible Galois groups and determine the 

necessary conditions for their existence continues to drive research 

in algebraic number theory, group theory, and related fields. 

The historical journey of the Inverse Galois Problem reflects the deep 

connections between algebra, number theory, and group theory. It 

underscores the profound impact of Galois theory and its ongoing 

influence in modern mathematics. 

3.3 Known solutions and examples 

For n = 3, we may take p = 7. Then Gal(Q(μ)/Q) is cyclic of order 

six. Let us take the generator η of this group which sends μ to μ3. We 

are interested in the subgroup H = {1, η3} of order two. Consider the 

element α = μ + η3(μ). By construction, α is fixed by H, and only has 

three conjugates over ℚ: 

α = η0(α) = μ + μ6, 

β = η1(α) = μ3 + μ4, 

γ = η2(α) = μ2 + μ5. 

Using the identity: 

1 + μ + μ2 + ⋯ + μ6 = 0, 

one finds that 

α + β + γ = −1, 

αβ + βγ + γα = −2, 

αβγ = 1. 

Therefore α is a root of the polynomial 

(x − α)(x − β)(x − γ) = x3 + x2 − 2x − 1, 

which consequently has Galois group Z/3Z over ℚ. 

4.Algebraic Number Theory Perspective 

4.1 Connection between number fields and Galois groups 

The connection between number fields and Galois groups lies at the 

heart of the Inverse Galois Problem and the broader field of Galois 

theory. Galois theory provides a powerful framework for 

understanding the relationship between field extensions and 

symmetry groups. In particular, it establishes a correspondence 

between Galois groups and certain types of field extensions known 

as Galois extensions. 

A number field is a finite extension of the field of rational numbers. 

It can be viewed as a field obtained by adjoining algebraic numbers 

to the rational numbers. Number fields play a central role in algebraic 

number theory, which studies the properties of these extensions and 

their associated algebraic structures. 

The Galois group of a Galois extension E over its base field F is the 

group of automorphisms of E that fix the elements of F. In other 

words, it consists of all the field automorphisms of E that leave the 

elements of F unchanged. The Galois group captures the symmetry 

and structure of the field extension, encoding how the elements of 

the extension are permuted by the automorphisms. 

The connection between number fields and Galois groups can be 

understood through the fundamental theorem of Galois theory. This 

theorem states that there is a bijective correspondence between the 

intermediate fields of a Galois extension E/F and the subgroups of the 

Galois group of E over F. This correspondence allows us to relate the 

properties of field extensions to the structure and properties of the 

associated Galois groups. 

One important result in this context is the Galois correspondence. It 

establishes a one-to-one correspondence between subgroups of the 

Galois group and intermediate fields of the Galois extension. This 

correspondence preserves inclusion, fixed fields, and normality, 

providing a powerful tool for studying the relationship between Galois 

groups and field extensions. 

The connection between number fields and Galois groups has 

significant implications for the Inverse Galois Problem. It raises the 

question of which groups can arise as Galois groups over specific 

number fields. By studying the properties of number fields and their 

associated Galois extensions, researchers aim to understand the 

conditions under which a given group can be realized as a Galois 

group. 

Algebraic number theory provides essential tools and techniques for 

exploring this connection. Concepts such as discriminants, 

ramification, and decomposition of primes play crucial roles in 

understanding the properties of number fields and their Galois groups. 

Class field theory, a branch of algebraic number theory, investigates 

the relationship between abelian extensions of number fields and 

ideals in those fields, offering insights into the existence of Galois 

extensions with specific properties. 

5.Interdisciplinary Connections 

5.1 Representation theory and the Inverse Galois Problem 

The reader is referred to [BLGGT14] for more details concerning 

anything in this section except the v = l case of (5) below, for which 

we refer to [Car12]. For a field k we adopt the notation Gk to denote 

the absolute Galois group of k 

Let ℤn,+ be the set of n-tuples a = (ai) ∈ ℤn such that a1 ≥ a2 ≥ 

.... ≥ an. Let a ∈ ℤ n,+, and let Ξa be the irreducible algebraic 

representation of GLn with highest weight a. A RAESDC (regular, 

algebraic, essentially self-dual, cuspidal) automorphic representation 

of GLn(AQ) is a pair (π, µ) consisting of a cuspidal automorphic 

representation π of GLn(𝔸ℚ) and a continuous character µ : 𝔸ℚ
×/ℚ×→ 

ℂ× such that: 

(1)  (regular algebraic) π∞ has the same infinitesimal character as 

Ξ𝑎
∨ for a ∈ ℤn,+. We say that π has weight a. 

(2) (essentially self-dual) π ≅ π ∨ ⊗ (µ o det). 

Such a pair (π, µ) is an instance of a polarised representation in the 

sense. In this situation, there exists an integer w such that, for every 1 

≤ i ≤ n, ai + an+1−i = w. Let S be the (finite) set of primes p such that 

πp is ramified. There exist a number field M ⊂ C, which is finite over 

the field of rationality of π in the sense, and a strictly compatible 

system of semisimple Galois representations for this notion; in 

particular the characteristic polynomial of a Frobenius element at 

almost every finite place has coefficients in M)  

ρλ(π) : 𝐺ℚ → GLn(�̅�λ), 

ρλ(µ) : 𝐺ℚ → �̅�λ
×, 
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where λ ranges over all finite places of M (together with fixed 

embeddings M ,→ Mλ ,→ Mλ, where Mλ is an algebraic closure of 

Mλ). 

5.2 Arithmetic geometry and its relation to Galois theory 

Arithmetic geometry is a branch of mathematics that combines 

techniques from algebraic geometry and number theory to study 

geometric objects defined over number fields or more general 

arithmetic rings. It explores the interplay between algebraic 

structures and arithmetic properties, providing insights into the 

behavior of geometric objects in the context of number theory. 

Arithmetic geometry has a strong connection to Galois theory, and 

their interrelation is significant in several ways: 

1. Galois Representations: Galois representations play a 

central role in both Galois theory and arithmetic geometry. 

Given a field extension E/F with Galois group G, a Galois 

representation associates a linear representation of G to 

every finite-dimensional vector space over E. These 

representations capture the action of the Galois group on 

various algebraic structures, such as cohomology groups or 

geometric objects. 

Arithmetic geometry studies Galois representations associated with 

geometric objects defined over number fields. For example, elliptic 

curves, which are fundamental objects in arithmetic geometry, have 

associated Galois representations that encode information about the 

arithmetic properties of the curves. 

2. Galois Cohomology: Galois cohomology is a powerful tool 

that connects Galois theory and arithmetic geometry. It 

studies cohomology groups associated with Galois 

modules, which are modules equipped with a compatible 

action of the Galois group. Galois cohomology provides a 

bridge between algebraic structures defined over number 

fields and the Galois group, allowing for the study of the 

obstructions and invariants related to the existence of Galois 

extensions. 

Arithmetic geometry employs Galois cohomology techniques to 

investigate the arithmetic properties of geometric objects. For 

instance, the study of Selmer groups, which are Galois cohomology 

groups associated with certain elliptic curves, provides information 

about the existence of rational points on these curves and the 

behavior of their arithmetic invariants. 

3. Galois Descent: Galois descent is a principle in Galois 

theory that relates the structure of Galois extensions to the 

properties of descent data. It provides a means to study field 

extensions by understanding how they arise from smaller 

subfields and the corresponding Galois descent data. 

Arithmetic geometry utilizes Galois descent to study rational points 

on varieties defined over number fields. By employing descent 

techniques, researchers can understand the obstruction to the 

existence of rational points and the conditions under which descent 

data can be lifted to rational points. 

4. Langlands Program: The Langlands program is a far-

reaching conjectural framework that establishes deep 

connections between Galois representations, automorphic 

forms, and arithmetic geometry. It proposes a correspondence 

between certain types of Galois representations and 

automorphic representations, linking the arithmetic 

properties of number fields to the behavior of automorphic 

forms on adele groups. 

Arithmetic geometry contributes to the Langlands program by 

providing geometric and number-theoretic insights into the behavior 

of automorphic forms and their associated Galois representations. It 

helps establish connections between Galois representations and the 

arithmetic properties of the associated varieties. 

Arithmetic geometry and Galois theory are closely intertwined fields 

of study. The use of Galois representations, Galois cohomology, 

Galois descent, and the Langlands program in arithmetic geometry 

allows for a deeper understanding of the behavior of geometric objects 

over number fields and their connection to the Galois group. This 

interplay facilitates the exploration of fundamental questions in 

number theory, algebraic geometry, and algebraic number theory. 

6.Conclusion 

The Inverse Galois Problem, which aims to determine which finite 

groups can be realized as Galois groups over a given field, is a 

fascinating and challenging question in mathematics. In this research 

paper, we have explored the Algebraic Number Theory perspective of 

the Inverse Galois Problem, highlighting its connections to algebraic 

number fields and Galois groups. Through our investigation, we have 

examined the historical background of the problem, from Évariste 

Galois' groundbreaking work to the subsequent developments in the 

20th and 21st centuries. We have seen how mathematicians have made 

significant progress in solving the Inverse Galois Problem for certain 

classes of groups, while acknowledging that a complete 

characterization of all possible Galois groups remains an open 

question. Our research has emphasized the connection between 

number fields and Galois groups, demonstrating how Galois theory 

provides a powerful framework for studying the relationship between 

field extensions and symmetry groups. We have explored the 

fundamental theorem of Galois theory and its implications for 

understanding the properties of field extensions and the corresponding 

Galois groups. Furthermore, we have highlighted the interdisciplinary 

nature of the Inverse Galois Problem, showcasing its connections to 

areas such as algebraic number theory, group theory, representation 

theory, and arithmetic geometry. By investigating these connections, 

we have seen how concepts and techniques from these fields contribute 

to our understanding of the Inverse Galois Problem and shed light on 

the conditions under which Galois groups can be realized.Our 

exploration has also involved surveying recent advancements and 

techniques in solving the Inverse Galois Problem, including the 

application of class field theory, cohomology theory, and modular 

forms. We have discussed how these advancements have contributed 

to the progress made in solving the problem and have provided 

valuable insights into the existence of Galois groups with specific 

properties.  

This research paper has provided an in-depth exploration of 

the Algebraic Number Theory perspective of the Inverse Galois 
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Problem. By investigating the connections between algebraic 

number fields and Galois groups, we have gained a deeper 

understanding of the problem's intricacies, the progress made, and 

the challenges that lie ahead. The Inverse Galois Problem continues 

to be an active area of research, with many outstanding questions and 

open problems. We hope that this research paper serves as a valuable 

resource for researchers, mathematicians, and students interested in 

the Inverse Galois Problem and its connections to algebraic number 

theory. Through further exploration and collaboration, we aspire to 

advance our understanding of the Inverse Galois Problem and make 

significant contributions to this intriguing field of mathematics. 
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