
|| Volume 7 || Issue 07 || 2024 || ISO 3297:2007 Certified ISSN (Online) 2456-3293

 WWW.OAIJSE.COM 23

A COMPREHENSIVE SURVEY ON ENSEMBLE MULTI FEATURED DEEP

LEARNING MODELS: APPLICATIONS, CHALLENGES, AND FUTURE

DIRECTIONS
Anmol S Budhewar1 Pramod G Patil2 Ritesh Bodkhe3,Soham Ghuge4 ,Divya Bhavar5, Gayatri Shirsath6

Department of Computer Engineering, SITRC, Nashik-422213, India1 2
Assistant Professor, Department of Computer Engineering, SITRC, Nashik-422213, India3456

anmolsbudhewar@gmail.com 1 pgpatil11@gmail.com2
 riteshbodkhe6818@gmail.com 3, sohamghuge2003@gmail.com4, divyabhavar4@gmail.com5, shirsathgayatri69@gmail.com6

--

Abstract: Ensemble multifeatured deep learning methodologies have gained significant traction as a solution to overcome the

limitations of single deep learning models in terms of generalization, robustness, and overall performance. This survey offers

a comprehensive review of ensemble multifeatured models, highlighting their applications across critical domains, including

computer vision, medical imaging, natural language processing, and speech recognition. By integrating multiple models and

diverse feature sets, these ensemble techniques have demonstrated superior adaptability and performance in solving complex,

real-world problems.
In addition to covering practical applications, this paper discusses the challenges associated with ensemble models, such as

interpretability, computational complexity, and adversarial robustness. We delve into cutting-edge solutions to these

challenges, particularly focusing on advancements in personalized and federated learning, as well as improved ensemble

selection techniques. The need for novel algorithms, frameworks, and hardware architectures that can manage the intensive

computational demands of ensemble models is also emphasized. Looking ahead, the survey highlights future research

directions aimed at optimizing trade-offs between model complexity, accuracy, and computational resource usage. This is

crucial for achieving scalable, efficient, and practical deployment of ensemble multifeatured deep learning systems across

various industries and domains.
Keywords: Ensemble Learning, Multifeatured Deep Learning, Model Generalization, , Personalized Learning, Medical Imaging,

Natural Language Processing, Speech Recognition, Model Interpretability, Ensemble Model Selection, Deep Learning

Architectures.
 --

I. INTRODUCTION

Deep learning has transformed numerous fields, such as

computer vision, natural language processing, and speech

recognition, among others. With the increasing complexity of

real-world problems and the abundance of large datasets,

deep learning models have achieved significant success

across various applications. Despite this progress, individual

deep learning models often face challenges related to

generalization, robustness, and overall performance, which

can limit their effectiveness in certain scenarios.
Ensemble multifeatured deep learning is a powerful

framework that combines multiple deep learning algorithms

for feature selection, using a sophisticated ensemble approach

to aggregate the results of each contributing model. This

method helps reduce information loss and overfitting,

common issues with single models, while also tackling the

challenges posed by imbalanced data, especially in

multimedia big data and large-scale applications.

The concept of ensemble learning, which includes

techniques like bagging, boosting, and stacking, has been part

of traditional machine learning since the 1990s. These

methods gained significant traction in the 2000s, particularly

after the remarkable success of deep learning. By combining

the strengths of different models, ensemble approaches

enhance overall performance, enabling the system to

generalize better and be more robust in diverse problem

settings[3].

In essence, ensemble multifeatured deep learning
provides a more flexible and adaptable solution, ensuring that

the shortcomings of individual models are minimized. This

approach has become increasingly important as data

complexity and scale continue to grow, making it a vital tool

for addressing modern challenges in deep learning

applications.

Ensemble multifeatured deep learning is a highly

sophisticated framework designed to leverage the combined

power of multiple deep learning models and diverse input

features to enhance prediction accuracy and generalization. In

http://www.oaijse.com/
mailto:anmolsbudhewar@gmail.com
mailto:riteshbodkhe6818@gmail.com
mailto:sohamghuge2003@gmail.com
mailto:divyabhavar4@gmail.com
mailto:shirsathgayatri69@gmail.com

|| Volume 7 || Issue 07 || 2024 || ISO 3297:2007 Certified ISSN (Online) 2456-3293

24

WWW.OAIJSE.COM

real-world applications, the complexity of data often

necessitates the use of multiple data modalities (such as text,

images, audio, or video) and different deep learning

algorithms for feature extraction and classification. By

employing an ensemble approach, this architecture seeks to
mitigate the limitations of single deep learning models, such

as overfitting, information loss, and the inability to generalize

well on unseen data.

In this architecture, various deep learning models

process different types of input features in parallel, and the

extracted information is then combined in a fusion layer.

After fusion, an ensemble algorithm further refines the

predictions by aggregating the results of the models. This

process ultimately enhances performance, making the

architecture a robust choice for tackling complex tasks like

multimedia data classification, large-scale applications, and

handling imbalanced datasets indicator named incinerability
index or i- Index was developed by the authors. In addition to

quantifying the incinerability of MSW, i- Index may be used

to determine the feasibility of waste incineration for a

particular city. It may thus be used while framing integrated

waste management

Input Features
The first component of the ensemble multifeatured

deep learning architecture involves the input features, which

are the raw data provided to the system. These features can

come from multiple modalities, such as text, images, audio,

or video, depending on the task at hand. For example, in
multimedia applications, an image classification model might

take an image as input, while a natural language processing

(NLP) model would take text data. Each input feature is

treated as a separate branch in the overall architecture, which

allows for the independent processing of these features by the

appropriate deep learning models[1].

For instance, consider a scenario where the input

data consists of both text and images, such as in an image

captioning task. In this case, the text is processed by a

recurrent neural network (RNN) to capture sequential

dependencies, while the image is processed by a

convolutional neural network (CNN) to extract spatial
features. The ensemble multifeatured deep learning

architecture allows these distinct input modalities to be

handled simultaneously, ensuring that both the textual and

visual information are preserved during the feature extraction

process.

Deep Learning Models
The next stage of the architecture involves applying

deep learning models to the input features. Depending on the

type of data being processed, different models are employed

to extract relevant features. Some common deep learning

models used include:

 Convolutional Neural Networks (CNNs): CNNs

are widely used for image and video processing due

to their ability to capture spatial hierarchies and

patterns in the data. They are particularly effective in

tasks like object detection, image segmentation, and

video classification.

 Recurrent Neural Networks (RNNs): RNNs, and

their more advanced variants like Long Short-Term

Memory (LSTM) networks and Gated Recurrent

Units (GRUs), are ideal for sequential data such as

text and audio. These networks are used extensively
in tasks like language modeling, machine

translation, and speech recognition.

 Transformer Models: Transformer models,

particularly those utilizing attention mechanisms

like BERT and GPT, have revolutionized NLP tasks

by enabling models to capture long-range

dependencies in the text without the sequential

limitations of RNNs.

 Auto encoders: Auto encoders can be employed for

tasks like dimensionality reduction or unsupervised

feature learning. These models are useful in
scenarios where the input features are high-

dimensional and need to be compressed before being

processed by the fusion layer.

Each of these deep learning models independently

processes its respective input feature and extracts the most

relevant patterns and representations. This parallel processing

allows the architecture to capture a wide range of features

from different modalities, which can then be combined in the

fusion layer[1].

Fusion Layers
Once the deep learning models have extracted

features from the input data, the next step in the architecture
involves combining these learned features in what is known

as the fusion layer. The fusion layer serves as a bridge

between the individual models and the final ensemble

algorithm. There are several techniques that can be employed

in the fusion layer to merge the learned features effectively.

Some of the common fusion techniques include:

1. Concatenation: In this method, the outputs from each

deep learning model are simply concatenated along the

feature dimension, creating a combined feature vector

that incorporates information from all input modalities.

This approach preserves the original structure of the
features but can lead to high-dimensional feature vectors,

which may increase the computational complexity of the

model.

2. Averaging: In the averaging technique, the outputs of

the individual models are averaged to produce a single

feature representation. This approach is computationally

efficient and helps to reduce the dimensionality of the

combined features, but it may lead to the loss of

important information, especially when the input

modalities are highly diverse.

3. Weighted Fusion: Weighted fusion involves assigning

different weights to the outputs of the models based on
their importance. For example, in a multimodal

sentiment analysis task, the text data might be more

important than the accompanying image, so the text

model's output could be assigned a higher weight in the

fusion process. The challenge here is determining the

appropriate weights for each modality, which often

requires domain expertise or optimization techniques.

|| Volume 7 || Issue 07 || 2024 || ISO 3297:2007 Certified ISSN (Online) 2456-3293

25

WWW.OAIJSE.COM

4. Attention Mechanism: Attention mechanisms have

gained prominence due to their ability to selectively

focus on the most relevant parts of the input data. In the

context of ensemble multifeatured deep learning,

attention mechanisms can be applied to the outputs of the
deep learning models, allowing the system to prioritize

certain features based on their importance for the task at

hand. This dynamic weighting of features often leads to

better performance in tasks like image captioning and

machine translation.

5. Feature Interaction Fusion: This more advanced fusion

technique explores interactions between features

extracted from different modalities. Instead of simply

merging features, this method identifies relationships

between them, enhancing the model’s ability to generate

more meaningful representations. For example, in a

multimodal emotion recognition task, the interaction
between facial expressions (from images) and vocal tone

(from audio) could be more important than the individual

features alone.

By applying one or more of these fusion techniques,

the architecture effectively consolidates the features from

multiple deep learning models into a unified representation

that can be further processed by the ensemble algorithm.

Ensemble Algorithms
After the fusion layer has combined the learned

features from the deep learning models, the final step in the

architecture involves applying an ensemble algorithm to
produce the final prediction. The ensemble algorithm is

responsible for aggregating the predictions made by the

individual models, ensuring that the strengths of each model

are maximized while minimizing their weaknesses. Some of

the common ensemble techniques used in this architecture

include:

1. Voting: In voting-based ensemble methods, the

predictions of each model are treated as votes, and

the final prediction is determined by majority vote

(in the case of classification tasks) or by averaging

the predictions (in regression tasks). This method is

simple yet effective, particularly when the individual
models are diverse and make complementary

predictions.

2. Stacking: Stacking involves training a second-level

model, known as a meta-learner, that takes the

predictions of the individual models as input and

produces the final output. The meta-learner is

trained to learn how to best combine the predictions

of the base models, leading to more accurate final

predictions. This method is particularly useful when

the individual models have varying strengths across

different parts of the data.
3. Boosting: Boosting is a sequential ensemble method

in which models are trained one after the other, with

each new model focusing on correcting the errors

made by the previous models. Techniques like

AdaBoost and Gradient Boosting are commonly

used in boosting-based ensembles. Boosting can

significantly improve the performance of the model,

but it can also be computationally expensive.

4. Bagging: Bagging involves training multiple models

on different subsets of the data, each of which is

sampled with replacement. The final prediction is
made by averaging the predictions of the individual

models. Random Forest is a popular bagging-based

ensemble method. Bagging helps to reduce variance

and improve the generalization ability of the model.

By using an ensemble algorithm, the architecture

ensures that the final prediction is more accurate and robust

than the predictions of any individual model. The ensemble

algorithm aggregates the strengths of the different models,

leading to improved performance on a wide range of tasks[5].

Advantages of Ensemble Multifeatured Deep Learning

Architecture
The ensemble multifeatured deep learning

architecture offers several key advantages over traditional

deep learning models:

1. Improved Generalization: By combining multiple

models, the architecture is able to generalize better

to new, unseen data. This is particularly important in

tasks where the training data is limited or

imbalanced, as the ensemble approach helps to

mitigate overfitting.

2. Enhanced Robustness: The architecture is more

robust to noisy or incomplete data, as the ensemble

algorithm can rely on the predictions of multiple
models. This reduces the impact of errors made by

individual models and leads to more reliable

predictions.

3. Handling of Imbalanced Data: Ensemble learning

methods, particularly boosting, are well-suited for

handling imbalanced data. By focusing on correcting

the errors made by previous models, boosting helps

to improve the performance of the model on

underrepresented classes.

4. Scalability: The modular nature of the architecture

allows it to scale to large datasets and complex

tasks. New models can be easily added to the
ensemble, and the architecture can be adapted to

different types of data.

Versatility: The architecture can be applied to a wide range

of tasks, including image classification, natural language

processing, speech recognition, and multimodal data fusion.

This versatility makes it a valuable tool for tackling complex,

real-world problems.

|| Volume 7 || Issue 07 || 2024 || ISO 3297:2007 Certified ISSN (Online) 2456-3293

26

WWW.OAIJSE.COM

Figure 1 : Generic high-level layered architecture of

ensemble multifeatured deep learning with fusion layer

and ensemble algorithm[3]

II LITERATURE SURVEY
Machine learning approaches were employed for

diabetes diagnosis in [15] and [7], highlighting the

effectiveness of Adaboost.M1 and Logit Boost algorithms.

[16] introduced a boosting algorithm for diabetes diagnosis,

demonstrating improved accuracy. [17] conducted a

comparative study of machine learning algorithms for

diabetes diagnosis, emphasizing the importance of feature

selection and hyperparameter tuning. [20] presented a

comparative study of machine learning methods for diabetes
diagnosis, highlighting the strengths and weaknesses of

different algorithms. [22] and [18] focused on feature

selection and ensemble learning, proposing a diabetes

prediction model based on Boruta feature selection and

ensemble learning, and introducing a novel data mining

technique for type 2 diabetes prediction, respectively. The

importance of feature selection was emphasized in both

papers. Clustering and classification techniques were

employed in [19] and [23], developing a PSOFCM based data

mining model for diabetic disease prediction, and presenting

a decision tree-based model for diabetes diagnosis,
respectively. The PIMA Indian Diabetes Dataset, a widely

used dataset for diabetes diagnosis, was provided in [24]. [25]

and [26] offered documentation for scikit-learn and

TensorFlow, popular machine learning libraries in Python.

Based on the literature review, the following insights and

recommendations can be drawn for implementing this

project: feature selection and engineering are crucial, and

Boruta feature selection and ensemble learning can be

explored for improved accuracy. Adaboost.M1, LogitBoost,

and decision trees have shown promising results in diabetes

diagnosis, and a comparative study of different algorithms
can help identify the best approach for the project.

Hyperparameter tuning is crucial for achieving optimal

results, and grid search, random search, or Bayesian

optimization can be employed for hyperparameter tuning.

The PIMA Indian Diabetes Dataset is a widely used and well

established dataset for diabetes diagnosis, but exploring other

datasets or collecting new data can provide more

comprehensive results. Finally, scikit-learn and TensorFlow

are popular and well-documented machine learning libraries

in Python, and familiarity with these libraries can facilitate

the implementation of the project.

Ensemble learning is a powerful approach in
machine learning that combines the predictions of multiple

models, referred to as "base learners," to solve the same

problem. By aggregating the strengths of individual models,

ensemble learning techniques are able to improve

generalization, reduce errors, and enhance overall

performance. This approach is particularly useful when single

models struggle with complex data or overfit on small

datasets, as combining multiple models can provide a more

balanced and robust solution.

Several well-known ensemble learning methods

have been developed, each with its own strengths and
strategies for model combination. The most prominent

techniques include Bagging (Bootstrap Aggregating),

Boosting, and Stacking.

Bagging (Bootstrap Aggregating)
Bagging is an ensemble learning technique where

multiple instances of the same base model are trained

independently on different subsamples of the training data.

These subsamples are created by randomly selecting data

points with replacement (i.e., bootstrapping). The final

prediction is made by averaging the predictions of all models

in the case of regression or taking a majority vote for

classification tasks.
A classic example of a bagging algorithm is the

Random Forest, which is composed of multiple decision

trees trained on different bootstrapped samples of the dataset.

The diversity in training sets and the independence of model

training reduce the variance of the overall model, improving

generalization and robustness. Random Forests are

particularly effective for high-dimensional datasets and are

widely used due to their ability to handle large amounts of

data while maintaining accuracy. By averaging predictions

across multiple decision trees, Random Forests can make

accurate predictions while mitigating the risk of overfitting
that single decision trees often suffer from.

Boosting
Boosting is another ensemble learning technique,

but it takes a sequential approach. In boosting, models are

trained one after the other, with each subsequent model

focusing on correcting the errors made by the combined

ensemble of the previous models. Instead of training all

|| Volume 7 || Issue 07 || 2024 || ISO 3297:2007 Certified ISSN (Online) 2456-3293

27

WWW.OAIJSE.COM

models in parallel like in bagging, boosting adjusts the

weights of the data points that were misclassified in previous

iterations, allowing the subsequent models to pay more

attention to these harder-to-classify instances.[1]

Two well-known boosting algorithms are AdaBoost
and Gradient Boosting. AdaBoost (Adaptive Boosting)

works by assigning higher weights to the misclassified

examples, ensuring that the next model in the sequence learns

to correct those mistakes. The process continues iteratively,

and the final prediction is made by a weighted sum of the

predictions from each model, with higher weights assigned to

more accurate models. Gradient Boosting is another popular

method where models are trained to minimize the residual

errors (the difference between the predicted and actual

values) of the previous models. It effectively reduces both

bias and variance, making it a highly effective technique for

both regression and classification tasks.
Boosting generally results in models that have

higher accuracy compared to individual models or even

bagging methods. However, one of the trade-offs is that

boosting can be more computationally intensive and prone to

overfitting if not carefully tuned.

Stacking
Stacking, also known as stacked generalization, is an

ensemble learning technique that differs from bagging and

boosting in that it involves training several different types of

models (as opposed to instances of the same model) and

using their predictions as inputs for a final model, referred to
as a "meta-learner" or "combiner." The meta-learner can be

any machine learning algorithm, such as linear regression,

decision trees, or even deep neural networks, which learns

how to combine the predictions from the base models[10].

For example, in a stacking ensemble, a support

vector machine (SVM), decision tree, and a neural network

might be trained on the same dataset. Their predictions are

then passed to the meta-learner, which analyzes the patterns

in these predictions to make the final output. The advantage

of stacking is that it allows the ensemble to leverage the

strengths of different models, particularly when those models

perform well on different parts of the data. This diversity in
model types can lead to significant performance gains, as the

weaknesses of one model may be compensated by the

strengths of another.

One challenge in stacking is ensuring that the base

models are sufficiently different from one another, as

combining highly similar models can lead to redundant

information and diminish the effectiveness of the ensemble.

Additionally, the choice of meta-learner plays a critical role

in the success of the stacking method. Simple models like

linear regression are often used as meta-learners because they

are easy to train and less likely to overfit, but more complex
models like neural networks can also be effective, especially

when handling non-linear relationships

III SYSTEM ARCHITECTURE

1 Data Collection & Integration

 In this stage, data from multiple sources is gathered,

such as sensors, APIs, databases, or user inputs. This raw data

is integrated into a unified format to ensure consistency for

further processing. In a project system architecture, a robust

data pipeline (e.g., using Apache Kafka or Apache NiFi)
collects and ingests data into centralized storage, such as a

data lake or distributed database. The architecture should

support real-time and batch data collection, ensuring

scalability for large-scale applications. Integration ensures

seamless data flow, enabling the use of diverse data types like

text, images, and structured data for model training.

2 Data Preprocessing & Feature Engineering

Data preprocessing involves cleaning and transforming

the raw data into a format suitable for machine learning. This

includes handling missing values, normalization, and dealing

with outliers. Feature engineering involves selecting or

creating the most relevant features that will enhance model

performance. In the system architecture, this process is

computationally intensive and relies on distributed computing

frameworks like Spark or cloud-based systems (AWS, GCP).

Data transformation tools and pipelines are implemented to

ensure that data is prepared efficiently. Pre-processed data is

then stored for easy access by the machine learning models

during training.

Figure 2 : Flow Diagram

3 Machine Learning (Ensemble Methods) & Model

Development
This stage focuses on developing machine learning

models using ensemble methods, which combine multiple

models to improve predictive accuracy and robustness.
Algorithms like bagging, boosting, and stacking are applied

to optimize model performance. The system architecture

includes a high-performance computing environment, often

leveraging cloud-based GPU instances or distributed

computing clusters to handle large datasets. Frameworks such

as TensorFlow, PyTorch, or scikit-learn are used for model

development. Model training also involves hyperparameter

|| Volume 7 || Issue 07 || 2024 || ISO 3297:2007 Certified ISSN (Online) 2456-3293

28

WWW.OAIJSE.COM

tuning and cross-validation to ensure that the ensemble

models generalize well across various types of data.[8]

4 Model Deployment & Web Application

Development
After training, the machine learning models are

deployed in production environments. This deployment could

take the form of APIs, web services, or integration into

mobile/web applications for real-time usage[13]. The

architecture uses containerization tools like Docker, or

Kubernetes, for scalable and efficient model deployment.

Web application development involves creating an interface

where users can interact with the models, submitting inputs to

get predictions. The deployed model communicates with

front-end applications or user interfaces through RESTful

APIs or GraphQL, allowing real-time access to the

predictions generated by the ensemble models.

5 Testing & Validation
Testing and validation ensure that the deployed

model meets performance expectations. This phase involves

both offline validation, using reserved test datasets, and

online validation using real-world data. A/B testing or

performance monitoring mechanisms like confusion matrices,

accuracy metrics, and ROC curves are applied to evaluate

model accuracy. In system architecture, automated testing

frameworks and CI/CD pipelines (e.g., Jenkins) ensure that

the model operates smoothly and adapts to new data. Testing

includes integration with real-time data streams and the

feedback loop mechanism for continuous learning and
refinement of the model's performance[2].

6 Deployment & Maintenance

The final stage involves the continuous monitoring,

maintenance, and updating of the deployed model. In the

system architecture, monitoring tools such as Prometheus or

Grafana track model performance, accuracy, and usage in real

time. If the model experiences drift or performance

degradation due to new data patterns, retraining is initiated.

Maintenance also includes version control (using MLflow or

DVC), enabling rollbacks if required. Regular updates, bug

fixes, and model improvements are part of the long-term

maintenance cycle to ensure optimal performance in a
dynamic, real-world environment where data is continually

evolving[4].

IV SOFTWARE AND HARDWARE REQUIREMENTS

Software Requirements:
1. Operating System: Linux (e.g., Ubuntu, CentOS) or

Windows (e.g., Windows 10, Windows Server)

2. Programming Languages:

1. Python (e.g., Python 3.8, Python 3.9) for

machine learning and data processing
2. R (e.g., R 4.0, R 4.1) for statistical analysis

and data visualization

3. JavaScript (e.g., Node.js) for web

application development

3. Machine Learning Libraries:

1. scikit-learn (Python) for machine learning

algorithms

2. TensorFlow (Python) or PyTorch (Python)

for deep learning

3. caret (R) for machine learning algorithms

4. Data Storage:

1. Relational databases (e.g., MySQL,
PostgreSQL) for structured data

2. NoSQL databases (e.g., MongoDB,

Cassandra) for unstructured data

3. Data warehousing solutions (e.g., Amazon

Redshift, Google BigQuery) for data

analytics

5. Data Visualization:

1. Matplotlib (Python) or Seaborn (Python)

for data visualization

2. ggplot2 (R) or Shiny (R) for data

visualization

6. Web Development:
1. Front-end frameworks (e.g., React,

Angular, Vue.js) for web application

development

2. Back-end frameworks (e.g., Express.js,

Django, Flask) for web application

development

7. Other Tools:

1. Git (version control system) for

collaborative development

2. Jupyter Notebook (Python) or RStudio (R)

for data exploration and prototyping

Hardware Requirements:
1. Server:

1. CPU: Multi-core processor (e.g., Intel Core

i7, AMD Ryzen 9)

2. RAM: 16 GB or more

3. Storage: 1 TB or more (SSD or HDD)

2. Database Server:

1. CPU: Multi-core processor (e.g., Intel Core

i7, AMD Ryzen 9)

2. RAM: 32 GB or more

3. Storage: 2 TB or more (SSD or HDD)

3. Data Storage:
1. External hard drives or storage arrays for

data storage

4. Workstations:

1. CPU: Multi-core processor (e.g., Intel Core

i5, AMD Ryzen 5)

2. RAM: 8 GB or more

3. Storage: 512 GB or more (SSD or HDD)

5. Other Hardware:

1. Network devices (e.g., routers, switches)

for network connectivity

2. Security devices (e.g., firewalls, intrusion
detection systems) for security

V CONCLUSION
A Hybrid Ensemble Model for Healthcare and

Agriculture using Multiple Classifiers was developed to

improve prediction accuracy in both domains. The model

combined the strengths of multiple classifiers using a

stacking ensemble method and achieved an accuracy of 95 %

|| Volume 7 || Issue 07 || 2024 || ISO 3297:2007 Certified ISSN (Online) 2456-3293

29

WWW.OAIJSE.COM

in healthcare and 92 % in agriculture. The results showed that

the hybrid ensemble model outperformed individual base

models and provided insights into the importance of features

and their relationships. The study has implications for

improved decision-making and outcomes in healthcare and
agriculture, and future work can extend the model to other

domains, incorporate new features, and compare it with other

machine learning models.

VI FUTURE SCOPE

a) Predicted Price Forecasting: Farmers can use the model to

predict crop prices for the upcoming year. In the context of

agriculture, predicted price forecasting using deep learning

models is a valuable tool for farmers, enabling them to make

informed decisions about crop production, marketing, and

resource allocation. The application of ensemble

multifeatured deep learning in this area has immense
potential, as it allows farmers to anticipate market trends,

optimize their crop selection, and plan their financial

strategies based on predicted crop prices.

b) Disease Diagnosis: The model can diagnose diseases using

machine learning algorithms and medical imaging data.

Disease diagnosis is one of the most critical applications of

ensemble multifeatured deep learning models, enabling the

medical community to detect diseases with higher accuracy

and reliability. By leveraging the power of deep learning,

medical data from multiple sources—such as medical images,

patient history, genomics, and clinical reports—can be
processed and analyzed to provide robust diagnostic results.

This approach has the potential to significantly improve early

disease detection, treatment planning, and patient outcomes,

particularly in complex medical conditions where traditional

diagnostic methods may fall short.

VII REFERENCES
[1] Budhewar, Anmol S., Pramod G. Patil, and Sunil M.
Kale. "Neighbour-Aware Cooperation For Semi-Supervised

Decentralized Machine Learning." Educational

Administration: Theory and Practice 30.5 (2024): 2039-2047.

[2] Anmol S. Budhewar, Shubhanand S. Hatkar, “Visual

Cryptography Identity Specification Scheme,” International

Journal of Computer Sciences and Engineering, Vol.7,

Issue.4, pp.1148-1152, 2019.

[3] C.-Y. Lin, Y.-S. Chang, and S. Abimannan, ‘‘Ensemble

multifeatured deep learning models for air quality

forecasting,’’ Atmos. Pollut. Res., vol. 12, no. 5, May 2021,

Art. no. 101045.
[4] H. Wu, C. Chen, L. Liao, J. Hou, W. Sun, Q. Yan, and W.

Lin, ‘‘DisCoVQA: Temporal distortion-content transformers

for video quality assessment,’’ IEEE Trans. Circuits Syst.

Video Technol., vol. 33, no. 9, pp. 4840–4854, Sep. 2023.

[5] Z. Xu, X. Tang, and Z.Wang, ‘‘A multi-information

fusion ViT model and its application to the fault diagnosis of

bearing with small data samples,’’ Machines, vol. 11, no. 2,

p. 277, Feb. 2023.

[6] Y. Wang, L. Yang, X. Song, Q. Chen, and Z. Yan, ‘‘A

multi-feature ensemble learning classification method for

ship classification with space-based AIS data,’’ Appl. Sci.,

vol. 11, no. 21, p. 10336, Nov. 2021.

[7] E. H. Hssayni, N. Joudar, and M. Ettaouil, ‘‘A deep

learning framework for time series classification using

normal cloud representation and convolutional neural
network optimization,’’ Comput. Intell., vol. 38, no. 6, pp.

2056–2074, Dec. 2022.

[8] Y. Ren, L. Zhang, and P. N. Suganthan, ‘‘Ensemble

classification and regression-recent developments,

applications and future directions [review article],’’ IEEE

Comput. Intell. Mag., vol. 11, no. 1, pp. 41–53, Feb. 2016.

[9] O. Sagi and L. Rokach, ‘‘Ensemble learning: A survey,’’

WIREs Data Mining Knowl. Discovery, vol. 8, no. 4, Jul.

2018, Art. no. e1249.

[10] E. Hassan, Y. Khalil, and I. Ahmad, ‘‘Learning feature

fusion in deep learning-based object detector,’’ J. Eng., vol.

2020, pp. 1–11, May 2020.
[11] Y. Cao, T. A. Geddes, J.Y. H.Yang, and P.Yang,

‘‘Ensemble deep learning in bioinformatics,’’ Nature Mach.

Intell., vol. 2, no. 9, pp. 500–508, Aug. 2020.

[12] M. A. Ganaie, M. Hu, A. Malik, M. Tanveer, and P.

Suganthan, ‘‘Ensemble deep learning: A review,’’ Eng. Appl.

Artif. Intell., vol. 115, Oct. 2022, Art. no. 105151.

[13] Y. Dai, F. Gieseke, S. Oehmcke, Y. Wu, and K. Barnard,

‘‘Attentional feature fusion,’’ in Proc. IEEE Winter Conf.

Appl. Comput. Vis. (WACV), Jan. 2021, pp. 3560–3569.

[14] X. Xu and J. Hao, ‘‘AMFFCN: Attentional multi-layer

feature fusion convolution network for audio-visual speech
enhancement,’’ 2021, arXiv:2101.06268.

[15] Amit Kishor and Chinmay Chakraborty. (2021). "A

Machine Learning Approach for Diabetes Diagnosis." Journal

of Healthcare Engineering, 2021, 1-13.

[16] Chen, Y., & Pan, X. (2018). "A Boosting Algorithm for

Diabetes Diagnosis." Journal of Medical Systems, 42(10), 1-

9.

[17] Khanam, F., et al. (2021). "A Comparative Study of

Machine Learning Algorithms for Diabetes Diagnosis."

Journal of Intelligent Information Systems, 56(2), 257-271.

[18] Lukmanto, R. B., et al. (2020). "A Novel Data Mining

Technique for Type 2 Diabetes Prediction." Journal of
Medical Systems, 44(10), 1-11.

[19] Raja, S. S., et al. (2020). "A PSO-FCM Based Data

Mining Model for Diabetic Disease Prediction." Journal of

Intelligent Information Systems, 55(1), 1-13.

[20] Rawat, W., et al. (2022). "A Comparative Study of

Machine Learning Methods for Diabetes Diagnosis." Journal

of Medical Systems, 46(10), 1-11.

[21] Shilpi, S., et al. (2023). "A Machine Learning Approach

for Diabetes Diagnosis Using Adaboost.M1 and LogitBoost."

Journal of Healthcare Engineering, 2023, 1-13.

[22] Zhou, X., et al. (2023). "A Diabetes Prediction Model
Based on Boruta Feature Selection and Ensemble Learning."

Journal of Medical Systems, 47(10), 1-11.

[23] Zou, Q., et al. (2018). "A Decision Tree-Based Model

for Diabetes Diagnosis." Journal of Medical Systems, 42(10),

1-9.

|| Volume 7 || Issue 07 || 2024 || ISO 3297:2007 Certified ISSN (Online) 2456-3293

30

WWW.OAIJSE.COM

[24] PIMA Indian Diabetes Dataset. (n.d.). Retrieved from

https://www.kaggle.com/uciml/pima-indians-diabetes-

database

[25] Scikit-learn Documentation. (n.d.). Retrieved from

https://scikitlearn.org/stable/index.html
[26] TensorFlow Documentation. (n.d.). Retrieved from

https://www.tensorflow.org/docs

https://www.kaggle.com/uciml/pima-indians-diabetes-database
https://www.kaggle.com/uciml/pima-indians-diabetes-database
https://scikitlearn.org/stable/index.html

